
Package: R2WinBUGS (via r-universe)
November 2, 2024

Title Running 'WinBUGS' and 'OpenBUGS' from 'R' / 'S-PLUS'

Date 2023-12-14

Version 2.1-22.1

Author originally written by Andrew Gelman <gelman@stat.columbia.edu>;
changes and packaged by Sibylle Sturtz

<sturtz@statistik.tu-dortmund.de> and Uwe Ligges

<ligges@statistik.tu-dortmund.de>. With considerable
contributions by Gregor Gorjanc <gregor.gorjanc@bfro.uni-lj.si>
and Jouni Kerman <kerman@stat.columbia.edu>. Ported to S-PLUS
by Insightful Corp.

Description Invoke a 'BUGS' model in 'OpenBUGS' or 'WinBUGS', a class
``bugs'' for 'BUGS' results and functions to work with that
class. Function write.model() allows a 'BUGS' model file to be
written. The class and auxiliary functions could be used with
other MCMC programs, including 'JAGS'.

Depends R (>= 2.13.0), coda (>= 0.11-0), boot

Imports utils, stats, graphics

Suggests BRugs (>= 0.3-2)

SystemRequirements OpenBugs for functions bugs() and openbugs() or
WinBUGS 1.4 for function bugs()

Maintainer Uwe Ligges <ligges@statistik.tu-dortmund.de>

License GPL-2

NeedsCompilation no

Date/Publication 2024-02-05 07:58:28 UTC

Repository https://uligges.r-universe.dev

RemoteUrl https://github.com/cran/R2WinBUGS

RemoteRef HEAD

RemoteSha c4875dc70b4c979b949b4e8e11075f38984a4991

1

2 R2WinBUGS-package

Contents

R2WinBUGS-package . 2
as.bugs.array . 3
attach.all . 4
bugs . 5
bugs.log . 10
openbugs . 11
plot.bugs . 13
print.bugs . 14
read.bugs . 14
schools . 15
write.model . 15

Index 17

R2WinBUGS-package Running WinBUGS and OpenBUGS from R / S-PLUS

Description

R2WinBUGS package provides possiblity to call a BUGS model, summarize inferences and con-
vergence in a table and graph, and save the simulations in arrays for easy access in R / S-PLUS. In
S-PLUS, the OpenBUGS functionality and the windows emulation functionality is not yet avail-
able. The main command is bugs.

Details

The following are sources of information on R2WinBUGS package:

DESCRIPTION file library(help="R2WinBUGS")

This file package?R2WinBUGS

Vignette vignette("R2WinBUGS")

Some help files bugs
write.model
print.bugs
plot.bugs

News file.show(system.file("NEWS", package="R2WinBUGS"))

as.bugs.array 3

as.bugs.array Convert to bugs object

Description

Function converting results from Markov chain simulations, that might not be from BUGS, to bugs
object. Used mainly to display results with plot.bugs.

Usage

as.bugs.array(sims.array, model.file=NULL, program=NULL,
DIC=FALSE, DICOutput=NULL, n.iter=NULL, n.burnin=0, n.thin=1)

Arguments

sims.array 3-way array of simulation output, with dimensions n.keep, n.chains, and length
of combined parameter vector.

model.file file containing the model written in WinBUGS code

program the program used

DIC logical; whether DIC should be calculated, see also argument DICOutput and
details

DICOutput DIC value

n.iter number of total iterations per chain used for generating sims.array

n.burnin length of burn in, i.e. number of iterations to discarded at the beginning for
generating sims.array

n.thin thinning rate, a positive integer, used for generating sims.array

Details

This function takes a 3-way array of simulations and makes it into a bugs object that can be conve-
niently displayed using print and plot and accessed using attach.bugs. If the third dimension
of sims() has names, the resulting bugs object will respect that naming convention. For example, if
the parameter names are “alpha[1]”, “alpha[2]”, ..., “alpha[8]”, “mu”, “tau”, then as.bugs.array
will know that alpha is a vector of length 8, and mu and tau are scalar parameters. These will all be
plotted appropriately by plot and attached appropriately by attach.bugs.

If DIC=TRUE then DIC can be either already passed to argument DICOutput as it is done in openbugs
or calculated from deviance values in sims.array.

Value

A bugs object is returned

Author(s)

Jouni Kerman, <kerman@stat.columbia.edu> with modification by Andrew Gelman, <gelman@stat.columbia.edu>,
packaged by Uwe Ligges, <ligges@statistik.tu-dortmund.de>.

4 attach.all

See Also

bugs

attach.all Attach / detach elements of (bugs) objects to search path

Description

The database is attached/detached to the search path. See attach for details.

Usage

attach.all(x, overwrite = NA, name = "attach.all")
attach.bugs(x, overwrite = NA)
detach.all(name = "attach.all")
detach.bugs()

Arguments

x An object, which must be of class bugs for attach.bugs.

overwrite If TRUE, objects with identical names in the Workspace (.GlobalEnv) that are
masking objects in the database to be attached will be deleted. If NA (the default)
and an interactive session is running, a dialog box asks the user whether masking
objects should be deleted. In non-interactive mode, behaviour is identical to
overwrite=FALSE, i.e. nothing will be deleted.

name The name of the environment where x will be attached / which will be detached.

Details

While attach.all attaches all elements of an object x to a database called name, attach.bugs
attaches all elements of x$sims.list to the database bugs.sims itself making use of attach.all.

detach.all and detach.bugs are removing the databases mentioned above.
attach.all also attaches n.sims (the number of simulations saved from the MCMC runs) to the
database.

Each scalar parameter in the model is attached as vectors of length n.sims, each vector is attached
as a 2-way array (with first dimension equal to n.sims), each matrix is attached as a 3-way array,
and so forth.

Value

attach.all and attach.bugs invisibly return the environment(s).

detach.all and detach.bugs detach the environment(s) named name created by attach.all.

bugs 5

Note

Without detaching, do not use attach.all or attach.bugs on another (bugs) object, because
instead of the given name, an object called name is attached. Therefore strange things may happen
. . .

See Also

bugs, attach, detach

Examples

An example model file is given in:
model.file <- system.file("model", "schools.txt", package="R2WinBUGS")
Some example data (see ?schools for details):
data(schools)
J <- nrow(schools)
y <- schools$estimate
sigma.y <- schools$sd
data <- list ("J", "y", "sigma.y")
inits <- function(){

list(theta = rnorm(J, 0, 100), mu.theta = rnorm(1, 0, 100),
sigma.theta = runif(1, 0, 100))

}
parameters <- c("theta", "mu.theta", "sigma.theta")
Not run:
You may need to edit "bugs.directory",
also you need write access in the working directory:
schools.sim <- bugs(data, inits, parameters, model.file,

n.chains = 3, n.iter = 1000,
bugs.directory = "c:/Program Files/WinBUGS14/",
working.directory = NULL)

Do some inferential summaries
attach.bugs(schools.sim)
posterior probability that the coaching program in school A
is better than in school C:
print(mean(theta[,1] > theta[,3]))
50
and school C's program:
print(quantile(theta[,1] - theta[,3], c(.25, .75)))
plot(theta[,1], theta[,3])
detach.bugs()

End(Not run)

bugs Run WinBUGS and OpenBUGS from R or S-PLUS

6 bugs

Description

The bugs function takes data and starting values as input. It automatically writes a WinBUGS
script, calls the model, and saves the simulations for easy access in R or S-PLUS.

Usage

bugs(data, inits, parameters.to.save, model.file="model.bug",
n.chains=3, n.iter=2000, n.burnin=floor(n.iter/2),
n.thin=max(1, floor(n.chains * (n.iter - n.burnin) / n.sims)),
n.sims = 1000, bin=(n.iter - n.burnin) / n.thin,
debug=FALSE, DIC=TRUE, digits=5, codaPkg=FALSE,
bugs.directory="c:/Program Files/WinBUGS14/",
program=c("WinBUGS", "OpenBUGS", "winbugs", "openbugs"),
working.directory=NULL, clearWD=FALSE,
useWINE=.Platform$OS.type != "windows", WINE=NULL,
newWINE=TRUE, WINEPATH=NULL, bugs.seed=NULL, summary.only=FALSE,
save.history=!summary.only, over.relax = FALSE)

Arguments

data either a named list (names corresponding to variable names in the model.file)
of the data for the WinBUGS model, or (which is not recommended and unsafe)
a vector or list of the names of the data objects used by the model. If data is a
one element character vector (such as "data.txt"), it is assumed that data have
already been written to the working directory into that file, e.g. by the function
bugs.data.

inits a list with n.chains elements; each element of the list is itself a list of starting
values for the WinBUGS model, or a function creating (possibly random) initial
values. Alternatively, if inits=NULL, initial values are generated by WinBUGS.
If inits is a character vector with n.chains elements, it is assumed that inits
have already been written to the working directory into those files, e.g. by the
function bugs.inits.

parameters.to.save

character vector of the names of the parameters to save which should be moni-
tored

model.file file containing the model written in WinBUGS code. The extension can be
either ‘.bug’ or ‘.txt’. If the extension is ‘.bug’ and program=="WinBUGS",
a copy of the file with extension ‘.txt’ will be created in the bugs() call and
removed afterwards. Note that similarly named ‘.txt’ files will be overwritten.
Alternatively, model.file can be an R function that contains a BUGS model
that is written to a temporary model file (see tempfile) using write.model.

n.chains number of Markov chains (default: 3)

n.iter number of total iterations per chain (including burn in; default: 2000)

n.burnin length of burn in, i.e. number of iterations to discard at the beginning. Default
is n.iter/2, that is, discarding the first half of the simulations.

bugs 7

n.thin thinning rate. Must be a positive integer. Set n.thin > 1 to save memory
and computation time if n.iter is large. Default is max(1, floor(n.chains
* (n.iter-n.burnin) / 1000)) which will only thin if there are at least 2000
simulations.

n.sims The approximate number of simulations to keep after thinning.

bin number of iterations between saving of results (i.e. the coda files are saved after
each bin iterations); default is to save only at the end.

debug if FALSE (default), WinBUGS is closed automatically when the script has fin-
ished running, otherwise WinBUGS remains open for further investigation

DIC logical; if TRUE (default), compute deviance, pD, and DIC. This is done in Win-
BUGS directly using the rule pD = Dbar - Dhat. If there are less iterations than
required for the adaptive phase, the rule pD=var(deviance) / 2 is used.

digits number of significant digits used for WinBUGS input, see formatC

codaPkg logical; if FALSE (default) a bugs object is returned, if TRUE file names of Win-
BUGS output are returned for easy access by the coda package through func-
tion read.bugs (not used if program="OpenBUGS"). A bugs object can be con-
verted to an mcmc.list object as used by the coda package with the method
as.mcmc.list (for which a method is provided by R2WinBUGS).

bugs.directory directory that contains the WinBUGS executable. If the global option R2WinBUGS.bugs.directory
is not NULL, it will be used as the default.

program the program to use, either winbugs/WinBUGS or openbugs/OpenBUGS, the latter
makes use of function openbugs and requires the CRAN package BRugs. The
openbugs/OpenBUGS choice is not available in S-PLUS.

working.directory

sets working directory during execution of this function; WinBUGS’ in- and
output will be stored in this directory; if NULL, a temporary working directory
via tempdir is used.

clearWD logical; indicating whether the files ‘data.txt’, ‘inits[1:n.chains].txt’,
‘log.odc’, ‘codaIndex.txt’, and ‘coda[1:nchains].txt’ should be removed
after WinBUGS has finished. If set to TRUE, this argument is only respected if
codaPkg=FALSE.

useWINE logical; attempt to use the Wine emulator to run WinBUGS, defaults to FALSE
on Windows, and TRUE otherwise. Not available in S-PLUS.

WINE character, path to ‘wine’ binary file, it is tried hard (by a guess and the utilities
which and locate) to get the information automatically if not given.

newWINE Use new versions of Wine that have ‘winepath’ utility

WINEPATH character, path to ‘winepath’ binary file, it is tried hard (by a guess and the
utilities which and locate) to get the information automatically if not given.

bugs.seed random seed for WinBUGS (default is no seed)

summary.only If TRUE, only a parameter summary for very quick analyses is given, temporary
created files are not removed in that case.

save.history If TRUE (the default), trace plots are generated at the end.

over.relax If TRUE, over-relaxed form of MCMC is used if available from WinBUGS.

8 bugs

Details

To run:

1. Write a BUGS model in an ASCII file (hint: use write.model).

2. Go into R / S-PLUS.

3. Prepare the inputs for the bugs function and run it (see Example section).

4. A WinBUGS window will pop up and R / S-PLUS will freeze up. The model will now run
in WinBUGS. It might take awhile. You will see things happening in the Log window within
WinBUGS. When WinBUGS is done, its window will close and R / S-PLUS will work again.

5. If an error message appears, re-run with debug=TRUE.

BUGS version support:

WinBUGS 1.4.* default

OpenBUGS 2.* via argument program="OpenBUGS"

Operation system support:

MS Windows no problem

Linux, Mac OS X and Unix in general possible with Wine emulation via useWINE=TRUE, but only
for WinBUGS 1.4.*

If useWINE=TRUE is used, all paths (such as working.directory and model.file, must be given
in native (Unix) style, but bugs.directory can be given in Windows path style (e.g. “c:/Program
Files/WinBUGS14/”) or native (Unix) style (e.g. “/path/to/wine/folder/dosdevices/c:/Program Files/WinBUGS14”).
This is done to achieve greatest portability with default argument value for bugs.directory.

Value

If codaPkg=TRUE the returned values are the names of coda output files written by WinBUGS
containing the Markov Chain Monte Carlo output in the CODA format. This is useful for direct
access with read.bugs.

If codaPkg=FALSE, the following values are returned:

n.chains see Section ‘Arguments’

n.iter see Section ‘Arguments’

n.burnin see Section ‘Arguments’

n.thin see Section ‘Arguments’

n.keep number of iterations kept per chain (equal to (n.iter-n.burnin) / n.thin)

n.sims number of posterior simulations (equal to n.chains * n.keep)

sims.array 3-way array of simulation output, with dimensions n.keep, n.chains, and length
of combined parameter vector

sims.list list of simulated parameters: for each scalar parameter, a vector of length n.sims
for each vector parameter, a 2-way array of simulations, for each matrix param-
eter, a 3-way array of simulations, etc. (for convenience, the n.keep*n.chains
simulations in sims.matrix and sims.list (but NOT sims.array) have been ran-
domly permuted)

bugs 9

sims.matrix matrix of simulation output, with n.chains*n.keep rows and one column for
each element of each saved parameter (for convenience, the n.keep*n.chains
simulations in sims.matrix and sims.list (but NOT sims.array) have been ran-
domly permuted)

summary summary statistics and convergence information for each saved parameter.

mean a list of the estimated parameter means

sd a list of the estimated parameter standard deviations

median a list of the estimated parameter medians

root.short names of argument parameters.to.save and “deviance”

long.short indexes; programming stuff
dimension.short

dimension of indexes.short

indexes.short indexes of root.short

last.values list of simulations from the most recent iteration; they can be used as starting
points if you wish to run WinBUGS for further iterations

pD an estimate of the effective number of parameters, for calculations see the sec-
tion “Arguments”.

DIC mean(deviance) + pD

Author(s)

Andrew Gelman, <gelman@stat.columbia.edu>; modifications and packaged by Sibylle Sturtz,
<sturtz@statistik.tu-dortmund.de>, and Uwe Ligges.

References

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (2003): Bayesian Data Analysis, 2nd edition,
CRC Press.

Sturtz, S., Ligges, U., Gelman, A. (2005): R2WinBUGS: A Package for Running WinBUGS from
R. Journal of Statistical Software 12(3), 1-16.

See Also

print.bugs, plot.bugs, as well as coda and BRugs packages

Examples

An example model file is given in:
model.file <- system.file(package="R2WinBUGS", "model", "schools.txt")
Let's take a look:
file.show(model.file)

Some example data (see ?schools for details):
data(schools)
schools

J <- nrow(schools)

10 bugs.log

y <- schools$estimate
sigma.y <- schools$sd
data <- list(J=J, y=y, sigma.y=sigma.y)
inits <- function(){

list(theta=rnorm(J, 0, 100), mu.theta=rnorm(1, 0, 100),
sigma.theta=runif(1, 0, 100))

}
or alternatively something like:
inits <- list(
list(theta=rnorm(J, 0, 90), mu.theta=rnorm(1, 0, 90),
sigma.theta=runif(1, 0, 90)),
list(theta=rnorm(J, 0, 100), mu.theta=rnorm(1, 0, 100),
sigma.theta=runif(1, 0, 100))
list(theta=rnorm(J, 0, 110), mu.theta=rnorm(1, 0, 110),
sigma.theta=runif(1, 0, 110)))

parameters <- c("theta", "mu.theta", "sigma.theta")

Not run:
You may need to edit "bugs.directory",
also you need write access in the working directory:
schools.sim <- bugs(data, inits, parameters, model.file,

n.chains=3, n.iter=5000,
bugs.directory="c:/Program Files/WinBUGS14/")

print(schools.sim)
plot(schools.sim)

End(Not run)

bugs.log Read data from WinBUGS logfile

Description

Read data such as summary statistics and DIC information from the WinBUGS logfile

Usage

bugs.log(file)

Arguments

file Location of the WinBUGS logfile

Value

A list with components:

stats A matrix containing summary statistics for each saved parameter. Comparable
to the information in the element summary of a bugs object as returned by bugs.

DIC A matrix containing the DIC statistics as returned from WinBUGS.

openbugs 11

Author(s)

Jouni Kerman

See Also

The main function that generates the log file is bugs.

openbugs Wrapper to run OpenBUGS

Description

The openbugs function takes data and starting values as input. It automatically calls the package
BRugs and runs something similar to BRugsFit. Not available in S-PLUS.

Usage

openbugs(data, inits, parameters.to.save,
model.file = "model.txt", n.chains = 3, n.iter = 2000,
n.burnin = floor(n.iter/2),
n.thin = max(1, floor(n.chains * (n.iter - n.burnin) / n.sims)),
n.sims = 1000, DIC = TRUE,
bugs.directory = "c:/Program Files/OpenBUGS/",
working.directory = NULL, digits = 5, over.relax = FALSE, seed=NULL)

Arguments

data either a named list (names corresponding to variable names in the model.file)
of the data for the OpenBUGS model, or a vector or list of the names of the data
objects used by the model. If data is a one element character vector (such as
"data.txt"), it is assumed that data have already been written to the working
directory into that file, e.g. by the function bugs.data.

inits a list with n.chains elements; each element of the list is itself a list of starting
values for the OpenBUGS model, or a function creating (possibly random) ini-
tial values. Alternatively, if inits are missing or inits = NULL, initial values
are generated by OpenBUGS.

parameters.to.save

character vector of the names of the parameters to save which should be moni-
tored

model.file file containing the model written in OpenBUGS code. The extension can be
either ‘.bug’ or ‘.txt’. If ‘.bug’, a copy of the file with extension ‘.txt’ will
be created in the bugs() call and removed afterwards. Note that similarly named
‘.txt’ files will be overwritten.

n.chains number of Markov chains (default: 3)

n.iter number of total iterations per chain (including burn in; default: 2000)

12 openbugs

n.burnin length of burn in, i.e. number of iterations to discard at the beginning. Default
is n.iter/2, that is, discarding the first half of the simulations.

n.thin thinning rate. Must be a positive integer. Set n.thin > 1 to save memory
and computation time if n.iter is large. Default is max(1, floor(n.chains
* (n.iter-n.burnin) / 1000)) which will only thin if there are at least 2000
simulations.

n.sims The approximate number of simulations to keep after thinning.

DIC logical; if TRUE (default), compute deviance, pD, and DIC. This is done in
BRugs directly.

digits number of significant digits used for OpenBUGS input, see formatC

bugs.directory directory that contains the OpenBUGS executable - currently unused
working.directory

sets working directory during execution of this function; WinBUGS in- and
output will be stored in this directory; if NULL, a temporary working directory
via tempdir is used.

over.relax If TRUE, over-relaxed form of MCMC is used if available from OpenBUGS.

seed random seed (default is no seed)

Value

A bugs object.

Note

By default, BRugs (and hence openbugs()) is quite verbose. This can be controlled for the whole
BRugs package by the option ‘BRugsVerbose’ (see options) which is set to TRUE by default.

Author(s)

Andrew Gelman, <gelman@stat.columbia.edu>; modifications and packaged by Sibylle Sturtz,
<sturtz@statistik.tu-dortmund.de>, and Uwe Ligges.

See Also

bugs and the BRugs package

Examples

An example model file is given in:
model.file <- system.file(package = "R2WinBUGS", "model", "schools.txt")
Let's take a look:
file.show(model.file)

Some example data (see ?schools for details):
data(schools)
schools

J <- nrow(schools)

plot.bugs 13

y <- schools$estimate
sigma.y <- schools$sd
data <- list ("J", "y", "sigma.y")
inits <- function(){

list(theta = rnorm(J, 0, 100), mu.theta = rnorm(1, 0, 100),
sigma.theta = runif(1, 0, 100))

}
or alternatively something like:
inits <- list(
list(theta = rnorm(J, 0, 90), mu.theta = rnorm(1, 0, 90),
sigma.theta = runif(1, 0, 90)),
list(theta = rnorm(J, 0, 100), mu.theta = rnorm(1, 0, 100),
sigma.theta = runif(1, 0, 100))
list(theta = rnorm(J, 0, 110), mu.theta = rnorm(1, 0, 110),
sigma.theta = runif(1, 0, 110)))

parameters <- c("theta", "mu.theta", "sigma.theta")

Not run:
both write access in the working directory and package BRugs required:
schools.sim <- bugs(data, inits, parameters, model.file,

n.chains = 3, n.iter = 5000,
program = "openbugs", working.directory = NULL)

print(schools.sim)
plot(schools.sim)

End(Not run)

plot.bugs Plotting a bugs object

Description

Plotting a bugs object

Usage

S3 method for class 'bugs'
plot(x, display.parallel = FALSE, ...)

Arguments

x an object of class ‘bugs’, see bugs for details
display.parallel

display parallel intervals in both halves of the summary plots; this is a convergence-
monitoring tool and is not necessary once you have approximate convergence
(default is FALSE)

... further arguments to plot

14 read.bugs

See Also

bugs

print.bugs Printing a bugs object

Description

Printing a bugs object

Usage

S3 method for class 'bugs'
print(x, digits.summary = 1, ...)

Arguments

x an object of class ‘bugs’, see bugs for details

digits.summary rounding for tabular output on the console (default is to round to 1 decimal
place)

... further arguments to print

See Also

bugs

read.bugs Read output files in CODA format

Description

This function reads Markov Chain Monte Carlo output in the CODA format produced by WinBUGS
and returns an object of class mcmc.list for further output analysis using the coda package.

Usage

read.bugs(codafiles, ...)

Arguments

codafiles character vector of filenames (e.g. returned from bugs in call such as bugs(.....,
codaPkg=TRUE,)). Each of the files contains coda output for one chain
produced by WinBUGS, the directory name of the corresponding file ‘codaIndex.txt’
is extracted from the first element of codafiles.

... further arguments to be passed to read.coda

schools 15

See Also

bugs, read.coda, mcmc.list

schools 8 schools analysis

Description

8 schools analysis

Usage

data(schools)

Format

A data frame with 8 observations on the following 3 variables.

school See Source.

estimate See Source.

sd See Source.

Source

Rubin, D.B. (1981): Estimation in Parallel Randomized Experiments. Journal of Educational
Statistics 6(4), 377-400.

Section 5.5 of Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (2003): Bayesian Data Analysis,
2nd edition, CRC Press.

write.model Creating a WinBUGS model file

Description

Convert R / S-PLUS function to a WinBUGS model file

Usage

write.model(model, con = "model.bug", digits = 5)

Arguments

model R / S-PLUS function containing the BUGS model in the BUGS model language,
for minor differences see Section Details.

con passed to writeLines which actually writes the model file

digits number of significant digits used for WinBUGS input, see formatC

16 write.model

Details

BUGS models follow closely S syntax. It is therefore possible to write most BUGS models as R
functions.

As a difference, BUGS syntax allows truncation specification like this: dnorm(...) I(...) but
this is illegal in R and S-PLUS. To overcome this incompatibility, use dummy operator %_% before
I(...): dnorm(...) %_% I(...). The dummy operator %_% will be removed before the BUGS
code is saved.

In S-PLUS, a warning is generated when the model function is defined if the last statement in the
model is an assignment. To avoid this warning, add the line "invisible()" to the end of the model
definition. This line will be removed before the BUGS code is saved.

Value

Nothing, but as a side effect, the model file is written

Author(s)

original idea by Jouni Kerman, modified by Uwe Ligges

See Also

bugs

Examples

Same "schoolsmodel" that is used in the examples in ?bugs:
schoolsmodel <- function(){

for (j in 1:J){
y[j] ~ dnorm (theta[j], tau.y[j])
theta[j] ~ dnorm (mu.theta, tau.theta)
tau.y[j] <- pow(sigma.y[j], -2)

}
mu.theta ~ dnorm (0.0, 1.0E-6)
tau.theta <- pow(sigma.theta, -2)
sigma.theta ~ dunif (0, 1000)

}

some temporary filename:
filename <- file.path(tempdir(), "schoolsmodel.bug")

write model file:
write.model(schoolsmodel, filename)
and let's take a look:
file.show(filename)

Index

∗ IO
bugs.log, 10
read.bugs, 14
write.model, 15

∗ datasets
schools, 15

∗ data
attach.all, 4

∗ file
bugs.log, 10
read.bugs, 14
write.model, 15

∗ hplot
plot.bugs, 13

∗ interface
as.bugs.array, 3
bugs, 5
openbugs, 11

∗ manip
as.bugs.array, 3

∗ models
bugs, 5
openbugs, 11

∗ model
write.model, 15

∗ package
R2WinBUGS-package, 2

∗ print
print.bugs, 14

as.bugs.array, 3
as.mcmc.list, 7
attach, 4, 5
attach.all, 4
attach.bugs (attach.all), 4

BRugsFit, 11
bugs, 2–5, 5, 10–16
bugs.data, 6, 11
bugs.inits, 6

bugs.log, 10

detach, 5
detach.all (attach.all), 4
detach.bugs (attach.all), 4

environment, 4

formatC, 7, 12, 15

mcmc.list, 14, 15

openbugs, 3, 7, 11
options, 12

plot, 13
plot.bugs, 2, 3, 9, 13
print, 14
print.bugs, 2, 9, 14

R2WinBUGS (R2WinBUGS-package), 2
R2WinBUGS-package, 2
read.bugs, 7, 8, 14
read.coda, 14, 15

schools, 15

tempdir, 7, 12
tempfile, 6

write.model, 2, 6, 8, 15
writeLines, 15

17

	R2WinBUGS-package
	as.bugs.array
	attach.all
	bugs
	bugs.log
	openbugs
	plot.bugs
	print.bugs
	read.bugs
	schools
	write.model
	Index

